Difference between revisions of "Team Babos"

From Hackteria Wiki
Jump to: navigation, search
(Team)
Line 1: Line 1:
 
==Team==
 
==Team==
Raguraj Ananthavettivelu, Denis Dragusha, Rina Emmenegger, Helena Gisler, Philipp Lötscher
+
Raguraj Ananthavettivelu | Wirtschaftsingenieur - Vertiefung Maschinenbau
 +
Denis Dragusha | Wirtschaftsingenieur - Vertiefung Maschinenbau
 +
Rina Emmenegger | Wirtschaftsingenieur - Vertiefung Computer Engineering
 +
Helena Gisler | Wirtschaftsingenieur - Vertiefung Maschinenbau
 +
Philipp Lötscher - Medizintechnik
  
 
==Einleitung==
 
==Einleitung==

Revision as of 12:51, 14 February 2018

Team

Raguraj Ananthavettivelu | Wirtschaftsingenieur - Vertiefung Maschinenbau Denis Dragusha | Wirtschaftsingenieur - Vertiefung Maschinenbau Rina Emmenegger | Wirtschaftsingenieur - Vertiefung Computer Engineering Helena Gisler | Wirtschaftsingenieur - Vertiefung Maschinenbau Philipp Lötscher - Medizintechnik

Einleitung

Kurzbeschrieb MedTech DIY

Das Modul verbindet Anwendungen der Medizintechnik mit Do It Yourself (DIY) Ansätzen. Dadurch wird das tiefere Verständnis von Medizintechnischen Geräten durch einen direkten, interdisziplinären und möglichst selbstgesteuerten Zugang gefördert. Basierend auf verschiedenen elektrophysiologischen Messmodulen (EMG, EKG, EOG, EEG) entwickeln die Studierenden im Team Ideen für innovative Projekte. Erste Prototypen werden mit den Mitteln der Digitalen Fabrikation hergestellt und getestet. (Modulbeschrieb HSLU, 2017)

Location FabLab

FabLabs sind ein globales Netzwerk von lokalen Labs. Sie fördern den Erfindergeist und bieten diverse digitale Fabrikationsmaschinen. In FabLabs ist es möglich, beinahe alles herzustellen.

Zu Beginn der Blockwoche konnte jedes Team seinen eigenen Bereich im FabLab der Hochschule Luzern – Technik & Architektur einrichten. Dazu wurden viele Ressourcen zur Verfügung gestellt, welche von den Teams selber nach Gebrauch ausgesucht wurden.

Jede Person, welche im FabLab arbeitet hat Verantwortlichkeiten. Dazu gehört die Sicherheit, der Betrieb und das Wissen. Es darf weder Menschen noch Maschinen Schaden zugefügt werden. Beim Betrieb muss jeder seinen Arbeitsplatz aufräumen und putzen. Dazu gehört auch die Mithilfe des Unterhalts und Verbesserungsvorschläge. Damit das Wissen transferiert werden kann, sollen möglichst viele Projekte und Arbeiten dokumentiert werden. Weitergabe des Wissens ist jeder Zeit erwünscht.

FabLab Luzern

Zielsetzung

Fachkompetenzen: Kreative Produktideen sollen an der Schnittstelle von Technik und Medizin umgesetzt werden. Dazu werden die Möglichkeiten der digitalen Fabrikation kennengelernt und eingesetzt. Das Wissen im Bereich der elektrophysiologischen Messmethoden wird angeeignet oder vertieft. Die notwendigen Informationen dazu werden selbstständig recherchiert, dokumentiert und ausgewertet.

Methodenkompetenzen: Die Studierenden sind fähig, in Ideenentwicklungsprozessen zu arbeiten. Die Aufgaben werden innerhalb des Kreativprozesses selbstständig oder in der Gruppe erarbeitet. Es ist wichtig, dass Bedürfnisse und technische Problemstellungen erkannt und bearbeitet werden können. Dazu gehört das erkennen der Zusammenhänge zwischen der menschlichen Anatomie/Physiologie und der Technik.

Sozialkompetenzen: Die konkreten Lerninhalte werden von den Studierenden selbstständig erarbeitet und vertieft. Jedes Teammitglied übernimmt Selbst- und Fremdverantwortung. Die Prozesse der Entscheidungsfindung sind im Team effizient und konstruktiv zu gestalten. Schlussendlich ist es wichtig, dass die erarbeiteten Grundlagen und Konzepte verständliche kommuniziert werden.

Grundlagen

Hackteria

Backyard Brains

Backyard Brains ist eine Website mit Open-Source Experimenten für Wissenschaftler, Lehrer und Amateure. Experten zeigen auf der Backyard Brains Website Vorschläge für Projekte auf.

Backyard Brains wurde von Absolventen der University of Michigan gegründet. Sie wollten mit Schulkindern währen neurowissenschaftlichen Outreach-Veranstaltungen interagieren. Kinder lernen besser, wenn sie die Materie sehen und anfassen können. Da aber eine solche Ausrüstung hohe Kosten mit sich bringt, wurden durch Einsatz von Standardelektronik Kits entwickelt, die Einblicke in das Innenleben des Nervensystems ermöglichen.

Arduino

Arduino ist eine Open-Source Elektronikplattform, die auf einfach zu bedienender Hard- und Software basiert. Arduino Boards sind in der Lage Eingänge (Sensor, Knopf, usw.) zu lesen und in einen Ausgang (Motorbetrieb, LEDs, usw.) umzuwandeln. Mit einer Reihe von Anweisungen, welche an den Mikrokontroller auf dem Board gesendet werden, kann dem Board gesagt werden was zu tun ist. Dazu wird die Programmiersprache Arduino verwendet, welche mit der IDE Software geschrieben und auf das Board geladen wird.

Dank der einfachen und leichten Benutzerführung von Arduino wurde es für tausende von Projekten und Anwendungen eingesetzt. Arduino ist sehr gut für Anfänger geeignet und dennoch flexibel genug für fortgeschrittene Anwender. Das Programm läuft auf Mac, Windows und Linux. Häufig wird es eingesetzt um kostengünstige wissenschaftliche Instrumente zu bauen, Chemie- und Physikprinzipien zu beweisen oder um mit der Programmierung und Robotik zu beginnen. Auch für das Bauen von interaktiven Prototypen und Musik Experimenten kann das Arduino eingesetzt werden.

Vorteile von Arduino: Preiswert, Plattformübergreifend, einfache und übersichtliche Programmierumgebung, Open-Source und erweiterbare Software, Open-Source und erweiterbare Hardware

Löt(l)en

Readings & Videos

Biotechnology for All / DIY in bioanalytics: doing and grasping it yourself

How to control someone else's arm with your brain | Greg Gage

Simplicity: We know it when we see it | George Whitesides

Why toys make good medical devices | Jose Gomez-Marquez

SENI GOTONG ROYONG: HackteriaLab 2014 – Yogyakarta

Open Source Estrogen: Housewives Making Drugs | Mary Maggic

Experimente

Muscle SpikerShield DIY v2

Muscle Spiker Shield Testversuch 1

Hier haben wird das Muscle Spiker Shield mit der Testperson verbunden und das Potentiometer justiert, dass die Empfindlichkeit stimmt. Durch die neuronale Ausschüttung der Aktionspotentiale (notwendig für die Kontraktion der Muskulatur) kann eine Spannung abgegriffen werden, welche dann sichtbar ist durch das Aufleuchten der LEDs ist die Intensität sichtbar. Die Voraussetzung für ein klares Ergebnis ist eben die korrekte Empfindlichkeit des Potentiometers, wenn es zu empfindlich ist, schlägt es ständig aus, wenn es zu wenig empfindlich ist, sind die Ausschläge nicht sichtbar.

Fehler, die unterlaufen sind: Vorerst reagierten die LEDs überhaupt nicht. Durch Vergleich mit einer anderen Gruppe sahen wir, dass die LEDs falsch eingesetzt wurden. Da diese polarisiert sind, ist dies entscheidend. Das ist eine gute Erkenntnis, da niemand von unserer Gruppe gewusst hat, dass LEDs falsch herum eingesetzt werden können.

Foto 13.02.18, 09 37 09.jpg

Spike Recorde Testversuch 2

Das Programm Spike Recorder wurde auf dem Laptop heruntergeladen. Über ein USB und Mikrofon AUX Kabel wurde der Laptop mit dem MUSCLE SPIKER SHIELD verbunden. Anschliessend haben wir das Programm Spike Recorder mit dem Eingang des AUX Kabels verbunden und dann wurden die Signale der Handbewegungen auf dem Laptop projiziert. Lange wurde nichts auf dem Laptop projiziert, dies lag daran, dass wir das falsche AUX Kabel hatten.

Skill-Share Session

Jede Gruppe hat den Auftrag, eine Skill-Share Session für die anderen Studierenden vorzubereiten und durchzuführen. In einem Zeitfenster von circa einer Stunde soll möglichst viel Wissen zum gewählten Thema übermittelt werden. Unsere Gruppe hat sich für das Thema Jonglieren entschieden.

Vorbereitung

Durchführung

Erfahrungen

Links

Ressourcen

Was unsere Gruppe gelernt hat

Arduino

Photoshop

Anatomie / Muskelaufbau

Literatur