Difference between revisions of "Hackteria FoodHacking - BioLab @ CynetArt - Dresden, Germany"

From Hackteria Wiki
Jump to: navigation, search
 
(28 intermediate revisions by 2 users not shown)
Line 1: Line 1:
<h1>Agrar is the New Media</h1>
+
<h1>Agar is the New Media</h1>
 +
Performance and participatory Workshop.
 +
BioLab @ CynetArt
 +
Wesbite [http://www.cynetart.de/#cynetart-2013-info_msTitle_4]
 +
Startnext Kampagne[http://www.startnext.de/biohacking-dresden]
 
<br>
 
<br>
Performance and participatory Workshop.<br>
+
 
<br>
+
[[File:agar_1.jpg|none|400px|]]
[[File:agar_1.jpg|none|300px|]]
 
 
Workshop set-up<br>
 
Workshop set-up<br>
[[File:agar_4.jpg|none|300px|]]
 
Agarose gel electrophoresis<br>
 
[[File:agar_7.jpg|none|300px|]]
 
  
 +
<h2>Introduction</h2>
 +
'''Agar or agar-agar''' is a gelatinous substance derived by boiling a polysaccharide in red algae, where it accumulates in the cell walls of agarophyte and serves as the primary structural support for the algae's cell walls. In Biology Agar is often used to provide a solid surface containing medium for the growth of bacteria and fungi. Research grade agar is used extensively supplemented with a nutrient and vitamin mixture in Petri dishes under sterile conditions.<br>
 +
<br>
 
[[File:agar_10.jpg|none|300px|]]
 
[[File:agar_10.jpg|none|300px|]]
 +
<br>
 +
'''Agarose gel electrophoresis''' is a method of gel electrophoresis used in biochemistry, molecular biology, and clinical chemistry to separate a mixed population of DNA or proteins in a matrix of agarose. The proteins or DNA may be separated by charge and size or length. The process is used in DNA Fingerprinting to compare different samples of DNA.<br>
  
'''Agar or agar-agar''' is a gelatinous substance derived by boiling a polysaccharide in red algae, where it accumulates in the cell walls of agarophyte and serves as the primary structural support for the algae's cell walls. In Biology Agar is often used to provide a solid surface containing medium for the growth of bacteria and fungi. Research grade agar is used extensively supplemented with a nutrient and vitamin mixture in Petri dishes under sterile conditions.<br>
+
[[File:MyOpenPCR_GelRun.png|none|300px|]]
 +
<br>
 +
<h2>Gel Box Workshop</h2>
 +
[[File:DIY_micro_GelWorkshop.jpg|none|300px|]]
 +
This new workshop introduces one of the key technologies of every genetic and molecular biology lab – the gel electrophoresis chamber. In a playful and DIY methodology, using only cheap and accessible materials, you can build your own little device in an IKEA tupperware, cast your own gel into a hot-glue mold, add samples, such as food coloring and run the gel in a battery powered electric field. If you dare you can then eat your seperated product, mmmmmhhh yummi!
 
<br>
 
<br>
'''Agarose gel electrophoresis''' is a method of gel electrophoresis used in biochemistry, molecular biology, and clinical chemistry to separate a mixed population of DNA or proteins in a matrix of agarose. The proteins or DNA may be separated by charge and size or length.
 
  
jelly
+
[[File:DIY_micro_GelElectrophoresis.jpg|none|300px|]]
 +
 
 
<br>
 
<br>
 +
<h2>Agar is the Media Workshop</h2>
 
Agar is typically sold commercially as a powder that can be mixed with water.<br>
 
Agar is typically sold commercially as a powder that can be mixed with water.<br>
 
Agarose gels are easy to cast and is particularly suitable for art, which accounts for the popularity of its use.<br>
 
Agarose gels are easy to cast and is particularly suitable for art, which accounts for the popularity of its use.<br>
 +
The gel is prepared by dissolving the agarose powder in an appropriate buffer to be used in electrophoresis.<br>
 +
A comb is placed in the cast to create wells for loading sample, and the gel should be completely set before use.<br>
 +
Once the gel has set, the comb is removed, leaving wells where samples can be loaded.<br>
 +
By applying an electric field the negatively charged molecules move towards the positively-charged anode during electrophoresis.<br>
 
<br>
 
<br>
 
+
[[File:AgarArt.jpg|none|600px|]]
Materials:
+
Agar Art<br>
 
+
<br>
 +
<h2>Materials</h2>
 +
'''Materials provided by the organizer:'''<br>
 
- 4 grosse Tische <br>
 
- 4 grosse Tische <br>
 
- 20 Tischlampen<br>
 
- 20 Tischlampen<br>
Line 30: Line 46:
 
- 40 günstige Tupperware (ca. 8x15cm)<br>
 
- 40 günstige Tupperware (ca. 8x15cm)<br>
 
- Lebensmittelfarben<br>
 
- Lebensmittelfarben<br>
 +
- reines, ungesüsstes Agar-Agar (aus dem Reformhaus)
 
- 2 Heizplatten<br>
 
- 2 Heizplatten<br>
 
- 40 dicke Bleistiftmienen (1-2mm)<br>
 
- 40 dicke Bleistiftmienen (1-2mm)<br>
 
- 40 9V Batterien<br>
 
- 40 9V Batterien<br>
 +
- A3 white Paper (strong)<br>
 +
- Table Salt<br>
 +
- plastic foam board<br>
 +
- tape (10x), scissors (5x), cutting knife (10x)<br>
 +
- Hot plate<br>
 +
 +
<br>
 +
'''Materials brought in:'''<br>
 +
- Aligator clips<br>
 +
- Laser cut combs<br>
 +
- Different colorants<br>
 +
- High-Voltage generator<br>
 +
- Sonification device<br>
 +
- DIY Gel-Box (Acrylic)<br>
 +
- Hot plate<br>
 +
- Cooking bowl<br>
 +
- serva g stain <br>
 +
- a pipette or any other means to add tiny amounts of liquid into the gel<br>
 
<br>
 
<br>
 +
[[File:agar_4.jpg|none|300px|]]
 +
Agarose gel electrophoresis<br>
 +
[[File:agar_7.jpg|none|300px|]]
 
<br>
 
<br>
 +
<br>
 +
<h2>Yeast Self-cloning</h2>
 +
by Rüdiger Trojok
 +
<br>
 +
'''Introduction'''<br>
 +
In diesem Experiment soll Backhefe (Saccharomyces Cervisiae) mit gentechnischen Methoden manipuliert und anschließend zum Brot backen verwendet werden. Das Experiment kann außerhalb von Labors mit Gentechniklizenz durchgeführt werden, da es sich um eine Selbstklonierung handelt. Die veränderten Organismen werden vor der weiteren Verwendung durch autoklavieren abgetötet, sodass keine Gefahr der Freisetzung besteht. Der Versuch soll einerseits eine genetische Manipulation in allen Schritten vorführen, die verwendeten Materialien und Vorgänge erklären und zur Reflektion über Sinn und Unsinn der deutschen Gentechnikgesetzgebung, sowie reale und fiktive Gefahren der Gentechnik und Synthetischen Biologie anregen.
  
 +
<br>
 +
'''Procedure'''<br>
 +
Zuerst werden die Zellen über Nacht in einer Flüssigkultur angezogen. Ist am nächsten Morgen eine ausreichende Menge an Zellen vorhanden, wird vormittags deren DNA extrahiert (die DNA wird auch von Urs Gaudenz für sein Gelelektrophorese-experiment weiterverwendet).
 +
Im Zweiten Teil des Experiments werden Hefezellen „kompetent“ gemacht, d.h. chemisch so verändert, das sie in der Lage sind fremd-DNA aufzunehmen. Anschließend werden diese Zellen mit der zuvor extrahierten Hefe DNA versetzt, sodass sie zu cis-genetisch manipulierten Organismen werden. Diese werden wiederum über Nacht in Kultur genommen, um am nächsten Morgen daraus ein frisches Brot zu backen. Das Brot, sowie alle gentechnisch Veränderten Hefen werden anschließend abgetötet (autoklaviert) und ausgestellt.
 +
Parallel zu allen Schritten wird per Videobeamer der Ablauf erklärt, sowie eine 15 min Zusammenfassung des Experiments Vormittags und Nachmittags. In den Pausen wird das Bild eines selbstgebauten Webcammikroskops projiziert, das die Hefezellen zeigt.
 +
<br>
 +
'''Materials brought in:'''
 +
<br>
 +
Zellkultur - Vortag<br>
 +
Benötigt: Hefekultur Saccharomyces Cervisae, Nährlösung (Zucker, Wasser, Hefeextrakt), optional: Inkubator
 +
<br>
 +
DNA Extraktion - Vormittags 2,5h<br>
 +
http://www.zymoresearch.de/dna-purification/genomic-dna/bacterial-fungal-dna/yeastar-genomic-dna-kit
 +
benötigt: Mikrozentrifuge, 3 x ca. 0,5l Glasbecher, Alufolie, Pipettenspitzen (20,200,1000µl),Kit
 +
<br>
 +
Transformation – Nachmittag 2h<br>
 +
http://www.zymoresearch.de/yeast/transformation/frozen-ez-yeast-transformation-ii-kit
 +
benötigt: Autoklav, Mikroskop, Zählkammer, Kit, große durchsichtige Plastikbox, Biohazard Sticker, Falcon tubes, Eppendorf tubes
 +
<br>
 +
 +
Vortrag – begleitend, insgesamt 30 min<br>
 +
Benötigt: Beamer
 +
<br>
 +
 +
Brot backen Folgetag - 3h<br>
 +
benötigt: Autoklav, Ofen, Brotbackmischung, Backform
 +
<br>
 +
 +
<br>
 +
 +
<br>
 +
 +
<h2>Workshop Mentors</h2>
 +
'''Urs Gaudenz, Switzerland – 1971
 +
'''
 +
Urs Gaudenz is microengineer and worked for Swiss high tech companies in the field of micro sensor technology and brushless motor control. With his solid background in electronics, mechanics and software he is working in an concurrent style between the disciplines. After several years of experience as a consultant in innovation management he is now engaged as lecturer for product innovation at the Lucerne University of Applied Science and Arts. He is the founder of GaudiLabs and a founding member of the International Hackteria Society. As an experienced workshop mentor he was invited to Musée d'art moderne et contemporain, Genève, INTERACTIVOS'12 Obsolete Technologies of the Future - Ljudmila, ISEA 2010 Dortmund, Sci|Art NanoLab - UCLA Summer Session 2012 - Los Angeles and many more.  His aim is to evolve towards more balanced collaborative entities in social action, business and technology.
 +
 +
<br>
 +
'''Rüdiger Trojok
 +
'''
 +
Biologist, Biohacker - 1986
 +
<br>
 +
 +
<h2>Links</h2>
 
http://hackteria.org/wiki/index.php/Agar_is_the_Media
 
http://hackteria.org/wiki/index.php/Agar_is_the_Media
 +
 +
http://learning.covcollege.ac.uk/content/Jorum/GMB_DNA-electrophoresis_LM-1.2-29Jan08/page27.htm

Latest revision as of 18:58, 17 September 2013

Agar is the New Media

Performance and participatory Workshop. BioLab @ CynetArt Wesbite [1] Startnext Kampagne[2]

Agar 1.jpg

Workshop set-up

Introduction

Agar or agar-agar is a gelatinous substance derived by boiling a polysaccharide in red algae, where it accumulates in the cell walls of agarophyte and serves as the primary structural support for the algae's cell walls. In Biology Agar is often used to provide a solid surface containing medium for the growth of bacteria and fungi. Research grade agar is used extensively supplemented with a nutrient and vitamin mixture in Petri dishes under sterile conditions.

Agar 10.jpg


Agarose gel electrophoresis is a method of gel electrophoresis used in biochemistry, molecular biology, and clinical chemistry to separate a mixed population of DNA or proteins in a matrix of agarose. The proteins or DNA may be separated by charge and size or length. The process is used in DNA Fingerprinting to compare different samples of DNA.

MyOpenPCR GelRun.png


Gel Box Workshop

DIY micro GelWorkshop.jpg

This new workshop introduces one of the key technologies of every genetic and molecular biology lab – the gel electrophoresis chamber. In a playful and DIY methodology, using only cheap and accessible materials, you can build your own little device in an IKEA tupperware, cast your own gel into a hot-glue mold, add samples, such as food coloring and run the gel in a battery powered electric field. If you dare you can then eat your seperated product, mmmmmhhh yummi!

DIY micro GelElectrophoresis.jpg


Agar is the Media Workshop

Agar is typically sold commercially as a powder that can be mixed with water.
Agarose gels are easy to cast and is particularly suitable for art, which accounts for the popularity of its use.
The gel is prepared by dissolving the agarose powder in an appropriate buffer to be used in electrophoresis.
A comb is placed in the cast to create wells for loading sample, and the gel should be completely set before use.
Once the gel has set, the comb is removed, leaving wells where samples can be loaded.
By applying an electric field the negatively charged molecules move towards the positively-charged anode during electrophoresis.

AgarArt.jpg

Agar Art

Materials

Materials provided by the organizer:
- 4 grosse Tische
- 20 Tischlampen
- 8 Steckerleisten
- Verlängerungskabel zu den Tischen
- Zugang zu Wasserbecken
- 40 günstige Tupperware (ca. 8x15cm)
- Lebensmittelfarben
- reines, ungesüsstes Agar-Agar (aus dem Reformhaus) - 2 Heizplatten
- 40 dicke Bleistiftmienen (1-2mm)
- 40 9V Batterien
- A3 white Paper (strong)
- Table Salt
- plastic foam board
- tape (10x), scissors (5x), cutting knife (10x)
- Hot plate


Materials brought in:
- Aligator clips
- Laser cut combs
- Different colorants
- High-Voltage generator
- Sonification device
- DIY Gel-Box (Acrylic)
- Hot plate
- Cooking bowl
- serva g stain
- a pipette or any other means to add tiny amounts of liquid into the gel

Agar 4.jpg

Agarose gel electrophoresis

Agar 7.jpg



Yeast Self-cloning

by Rüdiger Trojok
Introduction
In diesem Experiment soll Backhefe (Saccharomyces Cervisiae) mit gentechnischen Methoden manipuliert und anschließend zum Brot backen verwendet werden. Das Experiment kann außerhalb von Labors mit Gentechniklizenz durchgeführt werden, da es sich um eine Selbstklonierung handelt. Die veränderten Organismen werden vor der weiteren Verwendung durch autoklavieren abgetötet, sodass keine Gefahr der Freisetzung besteht. Der Versuch soll einerseits eine genetische Manipulation in allen Schritten vorführen, die verwendeten Materialien und Vorgänge erklären und zur Reflektion über Sinn und Unsinn der deutschen Gentechnikgesetzgebung, sowie reale und fiktive Gefahren der Gentechnik und Synthetischen Biologie anregen.


Procedure
Zuerst werden die Zellen über Nacht in einer Flüssigkultur angezogen. Ist am nächsten Morgen eine ausreichende Menge an Zellen vorhanden, wird vormittags deren DNA extrahiert (die DNA wird auch von Urs Gaudenz für sein Gelelektrophorese-experiment weiterverwendet). Im Zweiten Teil des Experiments werden Hefezellen „kompetent“ gemacht, d.h. chemisch so verändert, das sie in der Lage sind fremd-DNA aufzunehmen. Anschließend werden diese Zellen mit der zuvor extrahierten Hefe DNA versetzt, sodass sie zu cis-genetisch manipulierten Organismen werden. Diese werden wiederum über Nacht in Kultur genommen, um am nächsten Morgen daraus ein frisches Brot zu backen. Das Brot, sowie alle gentechnisch Veränderten Hefen werden anschließend abgetötet (autoklaviert) und ausgestellt. Parallel zu allen Schritten wird per Videobeamer der Ablauf erklärt, sowie eine 15 min Zusammenfassung des Experiments Vormittags und Nachmittags. In den Pausen wird das Bild eines selbstgebauten Webcammikroskops projiziert, das die Hefezellen zeigt.
Materials brought in:
Zellkultur - Vortag
Benötigt: Hefekultur Saccharomyces Cervisae, Nährlösung (Zucker, Wasser, Hefeextrakt), optional: Inkubator
DNA Extraktion - Vormittags 2,5h
http://www.zymoresearch.de/dna-purification/genomic-dna/bacterial-fungal-dna/yeastar-genomic-dna-kit benötigt: Mikrozentrifuge, 3 x ca. 0,5l Glasbecher, Alufolie, Pipettenspitzen (20,200,1000µl),Kit
Transformation – Nachmittag 2h
http://www.zymoresearch.de/yeast/transformation/frozen-ez-yeast-transformation-ii-kit benötigt: Autoklav, Mikroskop, Zählkammer, Kit, große durchsichtige Plastikbox, Biohazard Sticker, Falcon tubes, Eppendorf tubes

Vortrag – begleitend, insgesamt 30 min
Benötigt: Beamer

Brot backen Folgetag - 3h
benötigt: Autoklav, Ofen, Brotbackmischung, Backform



Workshop Mentors

Urs Gaudenz, Switzerland – 1971 Urs Gaudenz is microengineer and worked for Swiss high tech companies in the field of micro sensor technology and brushless motor control. With his solid background in electronics, mechanics and software he is working in an concurrent style between the disciplines. After several years of experience as a consultant in innovation management he is now engaged as lecturer for product innovation at the Lucerne University of Applied Science and Arts. He is the founder of GaudiLabs and a founding member of the International Hackteria Society. As an experienced workshop mentor he was invited to Musée d'art moderne et contemporain, Genève, INTERACTIVOS'12 Obsolete Technologies of the Future - Ljudmila, ISEA 2010 Dortmund, Sci|Art NanoLab - UCLA Summer Session 2012 - Los Angeles and many more. His aim is to evolve towards more balanced collaborative entities in social action, business and technology.


Rüdiger Trojok Biologist, Biohacker - 1986

Links

http://hackteria.org/wiki/index.php/Agar_is_the_Media

http://learning.covcollege.ac.uk/content/Jorum/GMB_DNA-electrophoresis_LM-1.2-29Jan08/page27.htm