Difference between revisions of "Guava seeds synthesized silver nanowires"

From Hackteria Wiki
Jump to: navigation, search
m
m (SEM photography)
Line 22: Line 22:
 
</gallery>
 
</gallery>
 
===SEM photography===
 
===SEM photography===
The scanning electron microscopy is kindly supported by Joakim Reuteler in ETH Zurich. Two samples were prepared, the first one is the final solution drop dried on glass, the second is the aggregations collected from the centrifuged final solution. There's no sign shows the existence of the wire-alike shape, indicating the failure of the nano wire synthesis with guava seeds extraction. Only "flake-alike" shape was found in the sample.
+
Two samples were prepared, the first one is the final solution drop dried on glass, the second is the aggregations collected from the centrifuged final solution. There's no sign shows the existence of the wire-alike shape, indicating the failure of the nano wire synthesis with guava seeds extraction. Only "flake-alike" shape was found in the sample.
 
<gallery mode="traditional" widths=360px heights=240px class="left" caption="SEM result">
 
<gallery mode="traditional" widths=360px heights=240px class="left" caption="SEM result">
 
File:centrifuged solution of AgNW.jpg|Centrifuged final solution.
 
File:centrifuged solution of AgNW.jpg|Centrifuged final solution.

Revision as of 14:09, 24 October 2023

Guava synthesis of the Ag-NW

Diagram of the experiment from the paper "UV-Light Mediated Biosynthesis of Silver Nanowires; Characterization, Dye Degradation Potential and Kinetic Studies".
BioClub Tokyo open lab day on Tuesday and its founder Georg Tremmel.

This experiment is composed with two existed paper, one is to synthesis AgNWs with Psidium Guajava seed, and the other one is to synthesis transparent conductive layer by transferring AgNWs which are light sintered by Riso print Gocco lamps. Guava seeds contain some compounds, such as polyphenols and alkaloids, which can reduce silver nitrate under certain conditions, thereby promoting the growth and stability of silver nanowires. These compounds acted as reducing agents and stabilizers during the preparation process, thus enabling a green synthesis method without external stabilizers. For the light sintering of AgNWs, a local Japanese toy kit "RISO PRINT GOCCO LAMP" is used to replace the IPL (intense pulsed light) in the original paper. The sintered AgNWs is formed on glass and then be transferred to a PVB film.

Experiments

The experiment process is introduced below in the gallery. The process aims to repeat the result introduced in the paper "UV-Light Mediated Biosynthesis of Silver Nanowires; Characterization, Dye Degradation Potential and Kinetic Studies". The first attempt was made in BioClub Tokyo. Additionally, 3 groups of mixtures with different concentration of guava seed extraction was prepared: 1. silver nitrate solution mixed with distilled water, 2. silver nitrate solution mixed with guava seed extraction heat stirred for 50 mins, 3. silver nitrate solution mixed with guava seed extraction heat stirred for 4 hours. All beakers are put under UV exposure for 4 hours, the color of the second and 3rd mixture were changed from milky white to orange. The orange solution and the aggregations were collected separately, but only the solution was examined by the UV-vis spectrum in Tokyo.

The UV-vis spectrum comparism

The result of UV-Vis spectrum data can be downloaded here.

SEM photography

Two samples were prepared, the first one is the final solution drop dried on glass, the second is the aggregations collected from the centrifuged final solution. There's no sign shows the existence of the wire-alike shape, indicating the failure of the nano wire synthesis with guava seeds extraction. Only "flake-alike" shape was found in the sample.

Preferences

  1. Ali, Faisal, Zahid Ali, Umer Younas, Awais Ahmad, Ghulam Mooin Ud Din, Muhammad Pervaiz, Rafael Luque, et al. 2021. “UV-Light Mediated Biosynthesis of Silver Nanowires; Characterization, Dye Degradation Potential and Kinetic Studies.” Sustainability 13 (November): 13220. https://doi.org/10.3390/su132313220.
  2. Lv, Pengfei, Huimin Zhou, Min Zhao, Dawei Li, Keyu Lu, Di Wang, Jieyu Huang, Yibing Cai, Lucian Amerigo Lucia, and Qufu Wei. 2018. “Highly Flexible, Transparent, and Conductive Silver Nanowire-Attached Bacterial Cellulose Conductors.” Cellulose 25 (6): 3189–96. https://doi.org/10.1007/s10570-018-1773-8.
  3. Ferraro, Giovanni, and Emiliano Fratini. 2019. “A Simple Synthetic Approach To Prepare Silver Elongated Nanostructures: From Nanorods to Nanowires.” Journal of Chemical Education 96 (3): 553–57. https://doi.org/10.1021/acs.jchemed.8b00628.
  4. Padhi, Santwana, and Anindita Behera. 2022. “Chapter 17 - Biosynthesis of Silver Nanoparticles: Synthesis, Mechanism, and Characterization.” In Agri-Waste and Microbes for Production of Sustainable Nanomaterials, edited by Kamel A. Abd-Elsalam, Rajiv Periakaruppan, and S. Rajeshkumar, 397–440. Nanobiotechnology for Plant Protection. Elsevier. https://doi.org/10.1016/B978-0-12-823575-1.00008-1.
  5. Lee, Dong Jun, Youngsu Oh, Jae-Min Hong, Young Wook Park, and Byeong-Kwon Ju. 2018. “Light Sintering of Ultra-Smooth and Robust Silver Nanowire Networks Embedded in Poly(Vinyl-Butyral) for Flexible OLED.” Scientific Reports 8 (1): 14170. https://doi.org/10.1038/s41598-018-32590-0.
  6. Jin, Hwa-Young, Jae-Yup Kim, Jin Ah Lee, Kwangsoo Lee, Kicheon Yoo, Doh-Kwon Lee, BongSoo Kim, et al. 2014. “Rapid Sintering of TiO2 Photoelectrodes Using Intense Pulsed White Light for Flexible Dye-Sensitized Solar Cells.” Applied Physics Letters 104 (14): 143902. https://doi.org/10.1063/1.4871370.