Difference between revisions of "Fluorescence Microscope"

From Hackteria Wiki
Jump to: navigation, search
(DIY Fluorescence microscopy)
(Laser-cut microscopy stages)
Line 74: Line 74:
== [[Laser-cut microscopy stages]] ==
[[Laser-cut microscopy stages]] are here.
== Instructions ==
== Instructions ==

Revision as of 16:23, 15 January 2022

First prototype from URS


Fluorescence microscopy is a technique used to analyze biological structures in a sample using a white lamp, and either organic or inorganic fluorophores such as dyes to excite a photo-emissive reaction, which is observed using an optical bandpass filter and a dichroic mirror. Various biochemical industries rely on fluorescence microscopy for the performance of molecular imaging to support medical diagnostics or research into cellular structures and nanomolecular activity.

Delta Optical Thin Film has previously discussed the principles of, and hardware implemented in modern fluorescence microscopy, but this article will explore some of its immediate applications and implications of further study in the field in more detail..]]

Version 01

Version 02

Version 03

DIY Fluorescence microscopy

Arrangement of microscope.jpg



Fluorescence Microscopy for Cell Labeling

Labeling cell structures with fluorophores such as fluorescent dyes drastically increase the observable properties of biological or chemical structures. These can be modified or conjugated to exhibit specific targetability for use in various medical applications. Fluorophores with high specificity are routinely used in medical diagnostics, with increasing research finding further applications for fluorescent cell labeling. For example: researchers have successfully used fluorescence microscopy to track and analyze viral DNA in cells at a local level and further connect that to cellular anti-viral defenses. This has potentially tremendous implications for future viral analysis and categorization.

Fluorescence Microscopy for Protein Characterization Intra-cellular dynamic protein interactions are crucial for a range of critical biological processes, acting as catalysts for metabolic reactions or responding to stimuli. Protein interactions are typically observable using dedicated instrumentation capable of analyzing the samples at the nanometer scale. However, transient interactions of proteins display weaker signals which are typically transparent, even to fluorescence microscopy instrumentation. The implementation of fluorescent protein biosensors is a novel approach to observing weaker protein interactions, which has found broad applications in varying fields of research. Researchers have utilized fluorescent proteins to observe intra-cellular reactions in the hopes of gaining insight into various transmission reactions, by analyzing the specific wavelengths emitted by excited cells during protein synthesis. Such studies have tremendous potential to provide insights into how irregular translations in a cell can result in developmental problems and disease transmission – yet they also require exceptionally sensitive instrumentation and highly tunable chromatic filters to accurately assess data.

fluorescence microscopy applied to Biology

      • Within microscopy 
      • material imaging 
      • medical imaging 
      • electron microscopy (transmission or scanning) 
      • scanning probe microscopy 
      • light microscopy 
      • bright field microscopy 
      • fluorescence microscopy
      • wide field microscopy 
      • con focal microscopy

Light is an electromagnetic wave created by photons

      • A point charge at rest produces an electric field 
      • A point charge moving with constant speed produces an electric field and a magnetic field 
      • A point charge moving with a varying speed (acceleration) produces an electromagnetic wave which can travel at 3.108m/s though empty space 
      • Light is an electromagnetic wave created by accelerating photons 
      • How the speed of the charge changes determines the length of the wave, how energetic it is and how focused the beam can be



The Chapter about the DIY microscope can be downloaded here and available now with Chinese translation included! Thanks to I-Chern Lai and Dimension+! Download Chinese


Thanks for helping us translating this instruction. If you don't have an account on this wiki, contact dusjagr.